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The problem of the motion of a continuous medium containing heterogeneous particles is an 

exceedingly complex one. Provided certain conditions are fulfilled, however, the phenomenon 

can be described with a sufficient degree of accuracy with the aid of the two-velocity contin- 

uous medium model. These conditions are as follows : (11 the particles are spheres of uni- 

form size. collisions among which may be neglected ; (2) the distances at which the flow 

characteristics undergo substantial change are much larger than the interparticle distances 

outside the discontinuity surfaces ; (3) the Mach number of the relative motion of the part- 

icles is subcritical. In addition, it is assumed that viscosity and thermal conduction are of 

importance only in gas-particle interaction processes. 

Flows of this type are dealt with in a large number of papers, although most investiga- 

tors have confined their discussions to the onedimensional stationary case. The present 

authors are familiar with just three studies of somewhat broader scope. Kh. A. Rakhmatulin 

[I] obtained the equations of continuity and motion and examined one-dimensional nonstation- 

ary flows with plane waves ; Ia. Z. Kleiman [2] studied and classified second-order discon- 

tinuities. In order to close the system of equations, both authors made use of relations equi- 

valent to the assumption of barotropy. Such an assumption cannot be made for most media. 

including gases. Finally, Kliegel and Nickerson [3] d eveloped equations for the character- 

istics of stationary axisymmetrical flow. They did not assume barotropy. but did however, 
neglect the volume occupied by the particles. 

The treatment of the problem in this paper does not rest on any such assumptions. In the 

general case the equations of continuity, motion, and energy are obtained in integral and 

differential forms. Discontinuity surfaces are considered. One-dimensional nonstationary 

and two-dimensional stationary flows are investigated in some detail. 

1. Let us consider the motion of a continuous medium containing solid or liquid 

spherical particles in the case where the size of the particles is small compared with the 

distance characteristic of substantial changes in the flow patameters. Let m be the mass, 

pi the density, med the internal energy, Vd the velocity, and Td the temperature of a 
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Flow of continuous medium 483 

particle, p the pressure, T the gas temperature, V the velocity of the gas, and t the time. 

We assume that the force exerted on a particle by the gas is the sum of a force proportional 

to the pressure gradient and the force mf due to the viscosity of the medium. In determining 

the first force we assume that the particle velocity is equal to the velocity of the gas at a 

given point; in determining the second force we assume that homogeneous flow about the 

particle proceeds with a velocity V - Vd. We likewise determine the heat flux mq from the 

gas to the particle due to the thermal conductivity of the medium. The particle can also 

receive heat mQd and be acted upon by a force mFd (through the action of external sources). 

Since condition (2) permits us to associate certain values of Vd and ed with each point 

in the flow, the equations of particle motion and energy are 

(V,v)Vd+~~+j;f;;vp--f-F,=0 
Vdved + 2 - q - Qd = 0’ 

(1.11 

(1.2) 

f = ‘p1.p - VJ (V - V,), q = $.(T - zy 
(1.31 

Td=Td(ed)9 qi=@(P,T,Td,p-vd(), n>--l, k>() 

The right-hand sides in (1.3) are known either from the solution of the problem of the 

homogeneous flow of a viscous heat-conducting gas about a sphere or from experiment. 

2. To construct the model of a two-velocity continuous medium, along with the true 

gas and particle densities p” and pi, we also introduce the densities p = hM/hr and 

pd = AM~/AT, where AM and AMY are the masses of the gas and particles in a physically 

infinitesimal volume hr. Thus, 

P = p” (I - Pd / Pd’) (2.1) 

The definition of pd is meaningful in one of two cases : either when Ar contains a suff- 

iciently large number of particles (condition (2) is satisfied) or when the number of part- 

icles is very small and we can set pd = 0. The other characteristics of the gas and part- 

icles are introduced along with p and pd. so that the medium containing heterogeneous 

particles is replaced by two interacting continuous media : the gas as such and the ‘gas’ 

of particles ; the properties of the latter are assumed to vary in accordance with (1.1) -(1.3). 

The results of this analysis remain valid even if one takes into account the effect of other 

particles on the flow around each individual particle. Should this effect indeed be consid- 

ered, 4’ in (1.3) also depend on pd, since I and q are here determined from the solution of 

the problem of gas flow in a symmetrical particle lattice. 

The continuity equations of both media are derived in the usual way and may be 

written in integral form as 
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where r is an arbitrary volume bounded by the surface S and n is the outer normal to S. 

To obtain the equations of motion and energy, let us consider the system of gas and 

particles enclosed by the arbitrary surface S bound to the fixed gas particles. The change 

in momentum of such a system over a time dt is due to the force Fd acting on the particles, 

the external mass force F acting on the gas, and the force acting on the boundary of the 

system. In addition, we must take into account the momentum flux associated with the 

transfer of particles through the surface S with velocity Vd - V. me note that the surface 

force is the resultant of pressure forces only, since the viscosity in the gas is assumed 

to be zero, and the force exerted by the particles on the gas in a volume dr is fpddr and 

therefore three-dimensional. Taking these considerations into account and carrying out the 

usual transformations [4] we obtain the equation of motion in integral form, 

+ Q bn + PdVd[(Vd - v) n]} ds = 0 

(2.3) 

In order to find the work done by the surface forces in deriving the energy equation, 

we must take into account the difference in velocities of portions of the surface element 

dS occupied by the gas and particles. As shown in [I], the portion of an element dS oc- 

cupied by the gas is (p/p”) dS ; the area occupied by the particles is fpd/pi)dS. In view 

of this fact and the flow of energy carried by the particles over the boundary S, we can 

carry out the same transformations as in our derivation of (2.3) to obtain 

+ ed)] + ;j [y f e + F (y i- ed)] - 

5 

-Q-"-Y (Qd + FdVd)j dr + \\[P ($v + svd) + (2*4) 

S 

+&(vd-v)(y +e,)]d= 0 

where V = IV], c is the internal energy of the gas and pQ& is the heat received from ex- 

ternal sources by the gas within a volume dr. 

Equations (1.1) -(1.3) and (2.1) -(2.4) d escribe the flows of a two-velocity medium. The 

system is closed by the expressions for p” and e for the specific enthalpy h of the gas) in 

terms of p and T, 
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pm = Pa (P* n t: = e (p, T), h G e + p / ~0 = h (p, 7-J (2.5) 

It will be convenient for us to assume that the variables have been reduced to dimen- 

sionless form. This may be achieved by referrin, s the spatial coordinates to the character- 

istic dimension of the problem 1, the velocities to Voo, the time to l/V,, the densities to 

POO, the pressure to p,VA , the internal energies to V,’ , the forces to Vd/I, the thermal 

fluxes to Vd/l, and the temperatures to Vd/R, where V, and p, are the characteristic 

dimensional velocity and R is the gas constant for the gas. After reduction to dimension- 

less form, dimensionless parameters appear on the right-hand sides of (1.3) and (2.51. 

These parameters enter as factors into 4’ and characterize the degree of gas-particle 

interaction. 

3. The integral equations can be replaced by differential equations in the flow regions 

not containing second-order discontinuities. Converting from surface to volume integrals, 

taking into account the arbitrariness of the volume r, and performing certain manipulations 

with the aid of (1.1) and (1.2). we arrive at the equations of continuity, motion, and energy 

in differential form, 

v bdVd) + ‘9 = o 

(V~)V+';+~~p+~i-F=O 

V~h+!&$ (vop+g)+!v =o 

(N=[(Vd-V):+Q]Pd/p-QQ) 

(3.11 

We might point out that the equations of continuity and motion agree with the corres- 

ponding equations of Rakhmatulin [ 11. 

4. Equations (l.l), (1.21, and (2.2) -12.4) also permit us to obtain the relations at 

second-order discontinuities. 

Since a small discontinuity element may be considered plane, we shall limit ourselves 

to plane discontinuities. By properly choosing the position and constant velocity of the 

coordinate system, we make the discontinuity surface coincide (at a given instant) with 

the x = 0 plane. We denote the projections of V and Vd on the z-axis by Vn and Vnd, and 

the components parallel to the discontinuity surface by Yr and Vrd. A jump of arbitrary 

magnituda 4 at the discon;innity will be denoted in thr present section by[$] m $+ - $_, 

where the minus sign is associated with parameters for x < 0 and the plus sign for x > 0. 

Let us consider a cylinder with bases of unit area lying in the planes x = f E and 

the generator parallel to x, and apply relations (2.2) -(2.4) to it. Integrating, we eliminate 

the derivatives with respect to x from the volume integrals. Taking the limit as E + 0, 

we take into account the finiteness of f, F, Fd, q, Q, Qd, and of the derivatives with 

respect to I, x, and t. 
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From (2.2) we have 

[pV,l = 0, hiV7ldl = 0 (4.1) 

These conditions permit us to introduce the fluxes j = pv, and jd = pdVnd, which are 

continuous over the transition through the discontinuity. Similarly, (1.11, (1.2). (2.3), (2.4), 

and (4.1) give us the remaining relations at the discontinuity, which after several manipula- 

tions become 

i [v?ll + jd [vmil + [PI = 0, j IV,1 = 0 

[v,ldzl + 2 ipI / Pd” = 0, jd[V+dl = 0 

i P/&2 + hl = 0, jdhl = 0 
(4.2) 

For a given flow on one side of the discontinuity, (4.1) and (4.2) along with (2.1) and 

(2.5) together determine the flow on the other side. 

Let us investigate the resulting expressions, neglecting the case when the gas is 

absent to at least one side of the discontinuity, i.e., assuming that p, > 0 and p+ > 0. In 

addition, since the case pd_ = pd+ = 0 is of no interest, we assume that pd_ > 0. 

Five fundamentally distinct cases are possible. 

Case 1. j = jd = 0, i.e., there is no flow of the medium through the discontinuity. 

Ry analysis of conditions (4.2) we have 

]pl = 0, V,_ = V*+ = Vrt& = VT-&d+ = 0 

The values of (V,], [V,,], [Pd], [ed] and [‘I’] are arbitrary and determine, in ac- 

cordance with (2.5) and (2.1), the jumps in p O, h, and p. We have a tangential discontinuity 

common to both media. 

Case 2. j = 0, jd f 0, i.e., a particle stream is present in the absence of a gas stream. 

From the first and third of conditions (4.2) and from the fact that pd/pi < 1 we find that 

]p]= 0, [v,,] = 0 

From this, (4.1), and the remaining equations of (4.2) we have 

[f&] = 0, led] = 0, Iv,,] = 0 

The jumps in V, and T are arbitrary and [by virtue of (2.5) and (2.1)] determine the 

jumps in p”, h, and p. In this case the tangential discontinuity in the gas is intersected 

by a continuous stream of particles. 

&se 3. i # ‘, jd = O? pd_ > O7 pd+ > O9 i.e., only the gas flows through the 

discontinuity, although particles are present everywhere. From this condition, using the 
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third, first, and fifth equations of (4.21, the first condition of (4.11, and the second equa- 

tion of (4.2) in that order, we have 

V,_ = Ilud+ = 0, IpI = [hl = IpI = [Vnl = 0, IV,1 = 0 

By (2.5). the continuity of p, h, and p implies the continuity of T and p”, as well as 

the continuity of pd [by virtue of (2.1)]. The discontinuities in Vrd and ed are arbitrary. 

We therefore have a continuous flow of gas through the surface of the tangential disconti- 

nuity in the ‘continuous medium’ of particles. The continuity of the gas parameters is as- 

sured by the continuity of the particle density. 

A characteristic feature of the types of discontinuities just considered is the continuity 

of pressure. 

Case 4’ j # 0, jd = O, pd_> O7 fd+ = 0; in this case there is a flow of gas 

through the boundary of the region containing the particles. The first and fifth equations of 

(4.2) now yield the two relations 

[p] = ja {$ (1 - ‘$jl - +} , 2[hl~~~++4~-3j1j~P~ 

which together with expressions (2.5) for p” and h determine [p], [T], [h], and [PO] ; more- 

over p+ = (_I: . As we see from the latter equation, the signs of [p] and [h] coincide. Further, 

on the basis of (4.1) and the first two equations of (4.2) 

IV,1 = - [plli, P&L = vn-IV,+, IV,1 = 0 

Since no particles are present for z > 0 in this case, it follows that the meaning of the 

parameters Vnd+, Vrd+, and cd+ is highly arbitrary. Nonetheless, they too can be deter- 

mined. [VT, 1 and [ed] are arbitrary and Vd+= - 

Kleiman[S], 

(2/p:) [p]. Using the terminology of 

we call these ‘combined’ discontinuities. 

Case 5. i # 0, jd # 0. In this case the second, fourth, and sixth conditions of (4.2) 

yield 

IV71 = 0: [VTdl = 0, ied] = 0 

i.e., the indicated parameters are continuous. 

With due regard for (2.11, the first and third equations of (4.2) may be written as 

2vd” 

'd- + "d+ 
2vdo [PI jdS = - ~ 
[‘da1 

(4.3) 

where u denotes the corresponding specific volumes. Since 2nd’ < Vd_ + Vd+, (4.1) - 

(4.3) imply that the signs of [Vnl, Wtil, [VI and [vd] coincide and are opposite to those 

of [p], [hl, [PI and [pd]. The discontinuities under consideration are shock waves. 

The equation of the Hugoniot curve is obtained from (4.2). (4.3). and (2.1) and has 
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[hl - v-o; v+o [PI - (;, ,;;y yvd+)\* ( vd+ YVdQ - v-Q Vd - VdO ) = O (4 4~ 

( Vd+ = 1/ Vd-’ - 2jd-2 vd” IpI) 

Since h and u” are functions of p and T, it follows that for a known flow for x < 0 this 

equation gives the relationship between v O + and p+. The parameters for x > 0 are determined 

by solving (4.4) and the first equation of (4.3) simultaneously. After u+ and ud+ have been 

determined, the valoas of Vn+ and v,,d+ are found from (4.1). 

Gas flow throagh discontinnities of the two latter types is accompanied by changes in 

the thermodynamic parameters of the gas. In the case of the combined discontinuity this is 

due to the finiteness of the volume occupied by the particles, i.e., with the finiteness of 

ud” = 1 &/6. This,is also the reason why (4.4) differs from the Hugoniot curve in a pure 

gas. Since Pd= JC &O/6 for a densely packed particle distribution, it is always the case 

that pd <pi. In the case of moderate pressures in the flow of a gas containing solid or 

liquid particles we also have pD -@ f&t.. Under such circumstances the effect of the 

finiteness of vd ’ is small, and fn the first approximation we can set v i=O. Changes in the 

parameters of the gas in combined diecontinuities and of the particle stream in shock 

waves do not occur, and the parameters of the gas in the shock wave undergo the same 

changes as those of a pure gas. Rudinger [s] computed the forward jumps in packing 

density employing this approximation. Taking into account the smallness of the jumps in 

the thermodynamic parameters of the gas in combined discontinnities, we obtain 

where s is the specific entropy of the gas. From this expression it is easy to determine the 

direction of possible changes in the parameters. 

5. Initial and boundary conditions are necessary in the solution of many of the prob- 

lems. The formulation of the initial conditions for the entire medium and of the boundary 

conditions imposed on the parameters of the gas does not differ from that for the flow of an 

ideal continnoas medium. Specifically, the normal component of the velocity V vanishes on 

hard surfaces. We do not need such boandary conditions to solve the equations descriMng 

the motion of particles, so that in the general case Vd has a component normal to the hard 

surface, and nonpermeation by the particles is guaranteed by their reflection according to 

laws determined by the nature of the particles and surfaces. The presence of reflected 

flows complicates the flow picture, making it necessary to consider multiple-velocity rather 

than just two-velocity media. The problem is simplified where it can be assamed that the 

particles are absorbed by the hard surfaces, as, for example, in the case of liquid droplets. 

6. We begin our investigation of various types of flows with the case of one-dimensional 

stationary flow with plane, cylindrical, or spherical symmetry. The distance from the 
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corresponding plane, axis, or center is denoted by r. Since the velocities and forces in 

this case are directed along r, it follows that (1.1). (1.2), and (1.3) become 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

where u = 0, 1, and 2, respectively, in the plane, cylindrical and spherical cases. 

Let us consider the problem of the characteristics of system (6.1) -(6.6). First of all, 

the form of equations (6.5) and (6.6) implies that the characteristics are the trajectories of 

the gas and particles. If the total derivatives with respect to L along the characteristics 

are denoted by a prime, the equations of the trajectories and the relations along them be- 

come 

r’ - V = 0, h’ - (1 / p”) p’ + N = 0 

r’ - vd = 0, ed' - q - Qd = 0 (6.8) 

The remaining equations contain derivatives of p, V, Vd, p, and pd. Derivatives of p 

appear in the first equation only and can be eliminated with the aid of (2.11, (2.5). and 

(6.5). As a result, instead of (6.1) we obtain 

= 0 (6.9j 

where a is the speed of sounri in the gas, 

and 

OpO = (x,, ’ ho = g), , h, = (zi), ) hT = (g), 

Adding to (6.2) -(6.4) and (6.9) the expression for the increment in p, 

gdr+ zdt = dp 

(6.10) 

and the analogous relations for dV, dVd, end dpd, we obtain a system of linear algebraic 

equations for determining the partial derivatives of p, V, Vd, and pd. The condition of 
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ambiguity of the solution of this system (equality to zero of the corresponding deter- 

minants) leads to the equations 

(vd - r’)” [a2 - (V - +)*I + 

tvd -r’)% 
PT”N v - $&i-i- (V-r’) (r-T) + 
fr T 

(6.11) 

(6.12) 

Equations (6.11) and (6.12) determine the characteristics different from the trajectories; 

(6.11) gives the directions of the characteristics and (6.12) the changes in the parameters 

along them. 

To investigate the form of the roots of equation (6.11) we first consider the point in 

the flow where V = Vd. Here (6.11) becomes a product of two cofactors, 

(Vd - r’)’ [b2 - (Vd - r’)*] = 0, > a2 

and therefore has the two distinct rl c’ = vd f b and the multiple root r’= Vd. In the sec- 

ond instance (6.12) vanishes by virtue of the first factor, and therefore cannot lead to any 

additional conditions. If V # Vd, the solution of (6.11) cannot be obtained in explicit form. 

However, in view of the smallness of V; = l/pi it is not difficult to find the expansions of 

the roots in powers of vi . As a result we have 

[ 

poapda2 
r1.2 

‘=Vfa 1+ 2pd02p (Vd - V + a)2 I + ’ (‘da*) 

’ = I/‘, k 
pea (V - vd) -‘/z 

(6.13) 

‘2.4 pdo $ [(v - vd)’ - a”] + o (vd”2) 

The first two roots are real and for V = Vd, coincide with V f b to within infinitesimals 

of higher order. The third and fourth roots for V # Vd are real only for IV - Vdl > a, i.e., 

if the relative velocity of the particles exceeds the speed of sound in the gas. This case 

exceeds the confines of the present theory, however. Thus, in addition to the trajectories 

the equations of one-dimensional nonstationary motion always have two families of real 

characteristics along which equations (6.13) and (6.12) are fulfilled. To within an accuracy 

of o (vi) equation (6.12) may be written as 
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x uvd’ F (vd - v) vd - v If a) (In pd)’ - U (f + Fd) - a (Vd - v ‘f U) q I = o 

where the upper (lower) sign corresponds to the characteristics of the first (second) family. 

7. Another interesting class of flows that depends on just two variables consists of 

plane and axisymmetrical stationary flows. Let x, r be rectangular coordinates ; in the 

axisymmetrical case the z-axis is directed along the axis of symmetry in the left-to-right 

direction. Projections of the forces and velocities are denoted by the appropriate sub- 

scripts. Equations (1.11, (1.2), and (3.1) then become 

(7.8) 

where v I 0 and 1, respectively, for the plane and axisymmetrical cases. 

Let us find the characteristics of system (7.1)-(7.8). The form of equations (7.7) and 

(7.8) shows first of all that the gas and particle streamlines are characteristics. Denoting 

the total derivatives with respect to x along the characteristics with a prime, we find that 

along the gas streamlines 

Vx?J’ - v, = 0, Vxh - (Vx / p”) p’ + IV = 0 

v, (h + l//2v2)’ + (m, + 4) pd / p - Q - w = 0 
(7.9) 

Similarly, along the particle streamlines 

vxd!i’ - v,d = 0, vxded’ - q - Qd = 0 
(7.10) 

v,, (l/2vda + p / pdo)’ - iv, - FdVd = 0 

The latter equation is the result of adding (7.5) and (7.6) multiplied by Vxd and Vyd. 
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It will be convenient for us to exclude the derivatives of p at this point, just aa we 

did in the case of nonstationary flows. As a result, in place of (7.1) we have 

(aa - 

p”aaVtl aPd vaV, 
(K = (Ff-F)V + SN) 

(7.11) 

-pd”pay 
-+-y-K=O 

AB Ba 
1 

[(I + 9’“) aa - Aal + ‘g (1 + y’“) A2} = 0 

(A = v, - f,‘v,, B = v;d - y’l;,d) 

Equations (7.2) -(7.6) and (7.11) together with the expreseion for the increment in p 

gdx + $dy = dp 

and similar expressions for u%‘~, dV,, dV&, dF/‘,d and dpd form a system of algebraic 

eqnations from which we can determine all partial derivatives of p, v,, VU, Vrd, v,, 

and pd. The equations of the characteristics may once again be obtained from the condition 

of ambiguity (non-single valuedneaa) of the solution of this system. 

The values of y’on the characteristics satisfy the condition 

Thus, in addition to the streamlines, the lines whose directions satisfy the equation 

Ba [(I + y’“) aa - Aa] + ‘g (1 + TJ’~) A2 = 0 (7.12) 

are also characteristics. 

As regards the relations along the characteristics, the corresponding conditions lead 

to clooing equations from (7.9) and (7.10) and to the equation 

a’y’ ;,,Avxp’ + a2vt,vX + (a2zJ2 - A2) V,V,’ + Au2 (‘+- 5) - 

_ tuayf + Alrz) (J/f + y’L) + !?$$.g [jr,; g?) + B (vfxdAp v~v~k3) Pd + 
vd d 

+ f, + Flld - Y’ (f, + Frd) + ‘y] -!- ‘;:;;’ [$ P’ + 
(7.13) 

d 

+ (1 + 9’“) (V,v,’ - L) ] = 0 (M = Fx-+fx,L = F',-+jy) 

which is fulfilled along the characteristics which are not streamlines. 
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To analyze the solutions of equation (7.12) we make use of expansions of its roots in 

powers of vi . Such an expansion yields 

PPd cvg - Y&,V,) 
Yll2 

I- 
- Ym,,, ‘f - 

2pd”Pa I/V3 - as (Vyd - Y&Vxd)3 
+ 0 (QO’) 

(7.14) 

V 
Y&4 = j7$ f 

‘p%W, sin 6 

Pdovxda 
(va sina 6 - as)]-“’ + 0 (vd”n) 

I V,Vyfa I/v2- a2 

YWl,Z = vz2 - a2 

(7.15) 

(6 is the angle between V and Vd). 

(7.15) implies that the roots y, , ’ are real only if the component of the gas velocity 

normal to Vd exceeds the speed of iound in the gas. However, as with nonstationary flow, 

the present theory is not valid for this case. 

Roots (7.14) are real for V > a and imaginary for V < a. In the first instance they cor- 

respond to the characteristics of the first and second families of conventional gas dy- 

namics. For Vz + a, as y,‘+ 00, in place of (7.14) one must make use of the expansion 

P”f+ (x~;,2v,, - ‘~1’ 
2pdo2pa I/v2- aa txm;,.&,d -v&)2 

+ 0 (vd") 

(7.16) 

( 
Vz2 - a2 

zco1,2 = VAV, f a vV2 - a2 1 

where the prime denotes derivatives with respect to y. In (7.14), (7.16) and below the upper 

(lower) sign and the subscript 1 (2) correspond to the characteristics of the first (second) 

family. 

The boundary of the region of hyperbolic behaviour found from (7.14) and (7.16) is not 

exact, since these expansions are not valid for V = a. To determine the boundary we make 

use of the fact that within the region of validity of the present theory the component of Vd 

normal to V, equal to vd sin 6, is small. Expanding the roots of (7.12) in I4 = Vd sin 6, we 

have 

po2pda2vvd sin 6 

pd Q2pb2 (V2 - b2) (VV,)S + O ( A2) 

* ova p02pda2VTd sin 6 
cot al,s = - b pdwpbd (vv,)3 + 0 (A2h b2 = a2 [ i+ pdI,“~~~dJs] 

where u is the angle between the characteristic and the gas streamline. Thus, with V >/b 
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there are two families of real characteristics in addition to the streamlines. In contrast to 

the case of a pure gas, they are not situated symmetrically with respect to the streamlines, 

but are rotated in the direction of the particle streamlines. To within o (vi) expression 

(7.13) has the form 

on the characteristics of the first and second families. 

8. We conclude our discussion of various classes of flows with an investigation of 

quasi-one-dimensional stationary flow. With the assumptions customary in this case, we 

find that (2.2) -(2.4), (1.11, and (1.2) yield 

pvs = c, Pdv& = “d 

(‘hvd2 -k P ! pdo)’ - f - F, = 0, ‘d’d’ 
-- q - Qd = 0 

p,fdVd’ + pVV’ + p’ -- pF - p,F, = 0 

[pv’ fl/ttr + k) + pdVdJ’ (1/2Vd” + ed + p / pd”)]’ - 

- p (Q + VF) - pd (Qd + V$d) = 0 

where the prime denotes derivatives with respect to distance measured along the axis of 

the channel,S is the cross-sectional area, c and cd are constants. This system generalizes 

equations usually employed to compute quasi-one-dimensional flows [6 -91. 

In the absence of external forces and heat fluxes, the last equation may be integrated 

to yield 

pvs (l/p + h) + pdvds t1/2vdz + ed + p / Pdo) = ‘OnSt 

Integration of the penultimate equation with S = const gives us 

pv2 + pdVdr + p = const 

In this case the foregoing equations become exact. 

9. To further our understanding of some of the peculiarities of two-velocity flows, let 

us consider the limiting process whereby two-velocity flow becomes one-velocity flow. Let 

@ in (1.3) increase. By virtue of the finiteness of the force f we then have Vd + V. For 

4’ = OQ the difference in velocities V and Vd vanishes, and on eliminating f the flow 

equations become 
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q)p+*+=o, vv$+&-$=o 

p~(VV)V+p,~~+VP-P,F,=O 

%I VVh,+ at - &(VVP + $f)- Qz =O, Wed + ‘2 - q - Qd = 0 

Pr=P+Pd=Po(~+~~o)-l, hr.=&e+$ed+ $ 

Fr. =LF + 2Fd, 
PE 

Q,=& Q +p$Q, 

Thus, in the limiting case we have a flow of a one-velocity medium of density pn, 

enthalpy h,, non-equilibrium parameter ed, and unchanging relative concentrations of the 

gas and particles in the fluid element. The directions of the characteristics in this case 

[lo] are determined by the speed of sound an frozen relative to ed ; ac may be computed 

from (6.101, where p” is replaced by pz and h by h,. The derivatives of pCT, pzp, h,, and 

h xP are found for a fixed fluid element with a constant ed. 

After some manipulation we obtain 

u~2=az 1++qy2+~)+~] 
II 

2 -1 

For small ud+ = l/pd* we have a > 9 Recalling that the directions of the two- 

velocity flow are determined by the speed a to within o (ud* ), we readily note the similarity 

between the two-velocity and limiting one-velocity flows on the one hand, and non-eqnili- 

brium and equilibrium flows on the other. This similarity is evidenced by the very occur- 

rence of the limiting transition as $t -V m. Consequently, the same difficulties may be en- 

countered in the computation of two-velocity flows as in the case of non-equilibrium flows 

[ll, 121. 

10. In using the model of a two-velocity medium it is necessary to bear in mind the 

assumptions on which it is based. This applies first of all to the condition pd < npd/6, 

whose violation in any flow region indicates that the model is inapplicable in the given 

instance. The conditions of applicability of the theory are likewise violated when pd (< p, 

i.e., when the number of particles is small. In this case, however, it is possible to dia- 

regard the effect of the particles on gas flow, and then to determine their motion from the 

known flow field using (1.1) and (1.2), where the first two terms are replaced by their total 

derivatives with respect to time. Such an approach has been developed in a number of 

studies on the flow of a medium containing water droplets around airfoils and engine 

inlets [13, 141. 

The authors are grateful to GM. Bam-Zelikovich and G.G. Chsnyi for their useful 

comments. 
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